Frequently used formula

Graph Stuff

Extrema

Critical Point

How to find critical point

Differentiate once, then find the root of f’(x) = 0.

The roots are the critical points.

Increasing/Decreasing(1st derivative test)

By ploting the graph of f and f’, you can find out whether it is increasing or decreasing.

Concavity (2nd derivative test)

By ploting the graph of f’ and f’', you can find out whether it is concave up or concave down.

It is better to find out the inflection point as it helps you to find out the concavity.

Point of Inflection

How to find inflection point

Differentiate twice, then find the root of f’'(x) = 0.

The roots is inflection point.

Asymptotes

Horizontal Asymptotes

find limxf(x)=a\lim_{x\rightarrow \infty } f(x) = a. If the answer aa is \infty, there is no horizontal asymptote.

Otherwise horizontal asymptote = aa.

Vertical Asymptotes

find limxaf(x)=±\lim_{x\rightarrow a } f(x) = \pm \infty. If the answer aa is \infty, there is no vertical asymptote.

Otherwise vertical asymptote = aa.

Inclined Asymptotes

There will be 2 cases. the procedure depends on the exponent of the numerator and denominator.

If exponent of numerator > exponent of denominator :

e.g. f(x)=x2x2x2f(x) = \frac{x^2-x-2}{x-2}

Inclined Asymptote = y=mx+cy = mx+c

where mm = limxf(x)x\lim_{x\rightarrow \infty } \frac{f(x)}{x}, cc = limx(f(x)mx)\lim_{x\rightarrow \infty } (f(x)-mx)

if exponent of denominator > exponent of numerator :

e.g. f(x)=x2+1x3x2f(x) = \frac{x^2+1}{x^3-x^2}

find limxnumeratorhighest exponentdenominatorhighest exponent=a\lim_{x\rightarrow \infty } \frac{\frac{numerator}{highest\space exponent}}{\frac{denominator}{highest\space exponent}} = a

limxx2+1x3x3x2x3=a\lim_{x\rightarrow \infty } \frac{\frac{x^2+1}{x^3}}{\frac{x^3-x^2}{x^3}} = a

Inclined asymptote = aa

Integration Stuff

Integration

Basic Integration Rules

Some good examples to try with :

  1. 4x2+9dx\int \frac{4}{x^2+9}dx
  2. 4x2x2+9dx\int \frac{4x^2}{x^2+9}dx

Definite integrals

Some important properties of Definite integrals

if ff is defined at x=ax=a, then aaf(x)dx=0\int_{a}^{a}f(x)dx = 0

if ff is integrable on [a,b], then baf(x)dx=abf(x)dx\int_{b}^{a}f(x)dx = -\int_{a}^{b}f(x)dx

Additive Interval Property

if ff is integrabble on the three closed intervals determined by a,b,c, then

abf(x)dx=acf(x)dx+cbf(x)dx\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx

Some good example to try with :

Given 02f(x)dx=3\int_{0}^{2} f(x)dx =3, 14f(x)dx=5\int_{1}^{4} f(x)dx = 5, 12f(x)dx=1\int_{1}^{2} f(x)dx = 1, 04g(x)dx=x\int_{0}^{4} g(x)dx = -x.

  1. Find 24f(x)dx\int_{2}^{4} f(x)dx
  2. Find 04f(x)dx\int_{0}^{4} f(x)dx
  3. Find 01[2f(x)+3g(x)]dx\int_{0}^{1} [2f(x)+3g(x)]dx
  4. Find 24[g(x)2f(x)]dx\int_{2}^{4} [g(x)-2f(x)]dx

Fundamental Theorem of Calculus (FTC)

if a function ff is continuous on the closed interval [a,b] and FF is an antiderivative of ff on the interval [a,b], then

abf(x)dx=F(b)F(a)\int_{a}^{b} f(x)dx = F(b) - F(a)

Taylor Expansion

Linear Approximation (Just to give you an idea)

f(x)L(x)=f(c)+f(c)(xc)f(x) \approx L(x) = f(c) + f'(c)(x-c)

for linear approximation,

Rn(x)=f(z)(xc)2R_n(x) = f''(z)(x-c)^2

Taylor Series

  1. Find nn, xx and cc.
  2. then find zz
  3. then find fn(x)f^n(x)
  4. then find Rn(x)R_n(x)

Taylor expension of n degree :

Tn(x)=f(c)+f(c)(xc)11!+f(c)(xc)22!+f(c)(xc)33!...+fn(c)(xc)nn!T_n(x) = f(c) + \frac{f'(c)(x-c)^1}{1!}+ \frac{f''(c)(x-c)^2}{2!}+ \frac{f'''(c)(x-c)^3}{3!} ...+ \frac{f^n(c)(x-c)^n}{n!}

Rn(x)=fn+1(z)(xc)n+1(n+1)!R_n(x) = \frac{f^{n+1}(z)(x-c)^{n+1}}{(n+1)!}

f(x)=Tn(x)+Rn(x)f(x) = T_n(x) + R_n(x)

Integration by substitution

Basically, use uu to make the thing less complicated to solve.

Geniue Steps:

Sub u=g(x)u = g(x)

Then du=g(x)dxdu = g'(x)dx

Rewrite the integrals in terms of uu

Find the resulting integrals

then replace uu by g(x)g(x).

Some good examples to try with :

  1. (x2+1)2(2x)dx\int (x^2+1)^2(2x)dx
  2. 2x1dx\int \sqrt{2x-1}dx
  3. 01x(x2+1)3dx\int^1_0 x(x^2+1)^3dx

General Power Rule for Integration

xndx=xn+1n+1+C\int x^ndx = \frac{x^{n+1}}{n+1} + C

where n1n \neq -1

e.g.

x1dx=x1+11+1=x22\int x^1 dx = \frac{x^{1+1}}{1+1} = \frac{x^2}{2}

Some good examples to try with :

  1. (3x25x+2)dx\int (3x^2 - \sqrt{5x} + 2)dx
  2. (x32x2)(1x5)dx\int (x^3-2x^2)(\frac{1}{x}-5)dx

Trigonometric substitution

Some good examples to try with :

  1. (2+tan2x)dx\int(2+tan^2x)dx
  2. (2sint3cost+t54)dt\int (2sint-3cost+t^{\frac{5}{4}})dt
  3. cos(x)(tan(x)+sec(x))dx\int cos(x)(tan(x)+sec(x))dx
  4. x22x2+1dx\int \frac{x^2-2}{x^2+1}dx
  5. 233x21(x3x)3dx\int_2^3 \frac{3x^2-1}{(x^3-x)^3}dx
  6. dxx29x2\int \frac{dx}{x^2\sqrt{9-x^2}}

Integration by parts

I like to call it reverse product rule.

  • you can pick which to be f(x)f(x) and g(x)g(x).

ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)

f(x)g(x)=f(x)g(x)dx+f(x)g(x)dxf(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x) dx

f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx

so basically :

(AB)=AB+BA(AB)' = A'B + B'A

AB=ABdx+BAdxAB = \int A'B dx + \int B' A dx

ABdx=ABBAdx\int A'Bdx = AB - \int B'A dx

For example, to solve lnxx2dx\int \frac{lnx}{x^2}dx

lnxx2dx\int \frac{lnx}{x^2}dx

=lnx1x2dx= \int lnx \frac{1}{x^2}dx

Let f(x)=lnxf(x) = lnx, g(x)=1x2g'(x) = \frac{1}{x^2}

Now you get lnx1x2dx=f(x)g(x)dx\int lnx \frac{1}{x^2}dx = \int f(x)g'(x) dx.

f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx

Now you need to find out g(x)g(x) and f(x)f'(x).

Look at the integration table (or you solve it yourself), you get f(x)=1xf'(x) = \frac{1}{x}, g(x)=1xg(x) = \frac{-1}{x}.

Sub the variables into the equation.

f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx

lnx1x2dx=(lnx1x)(1x1x)dx\int lnx \frac{1}{x^2}dx = (lnx\cdot\frac{1}{x}) - \int(\frac{1}{x} \cdot \frac{-1}{x})dx

Then you solve the (lnx1x)(1x1x)dx(lnx\cdot\frac{1}{x}) - \int(\frac{1}{x} \cdot \frac{-1}{x})dx to get the answer.

Note : Sometimes you may need to carry integration by part twice to get the answer.

Some good examples to try with :

  1. xexdx\int xe^{-x}dx
  2. xcos(x)dx\int xcos(x)dx
  3. x5xdx\int x^{5x}dx
  4. xx+2dx\int x\sqrt{x+2}dx
  5. tan1(x)\int tan^{-1}(x)
  6. sin1(x)\int sin^{-1}(x)
  7. excos(x)dx\int e^xcos(x) dx
  8. (lnx)2dx\int (lnx)^2dx
  9. x2sin(πx)dx\int x^2sin(\pi x)dx
  10. 0πxcos(x)dx\int_0^\pi xcos(x) dx
  11. 0txxtdx\int_0^t x\sqrt{x-t}dx
  12. 05xexdx\int_0^5 xe^{-x}dx
  13. 1ex3lnxdx\int_1^e x^3lnx dx

sine and cosine integrals

some good example to try with:

  1. sin5xcosxdx\int sin^5xcosxdx

  2. sin3xcos4xdx\int sin^3xcos^4xdx

  3. sin3xcos2dx\int sin^3xcos^2dx

  4. sin2xcos4xdx\int sin^2xcos^4xdx

secant and tangent integrals

some good example to try with:

  1. tan3xsecxdx\int \frac{tan^3x}{\sqrt{secx}}dx
  2. sec6xtan2xdx\int sec^6xtan^2xdx
  3. sec3xtan4xdx\int sec^3xtan^4xdx

Partial Fraction

It is a trick for linear functions and quadratic functions.

Basically, find A,B,C,D… (the variables) to get the job done.

Distinct Linear Factors

example :

You have this function 1x25x+6\frac{1}{x^2-5x+6}

since x25x+6=(x3)(x2)x^2-5x+6 = (x-3)(x-2)

1x25x+6=Ax3+Bx2\frac{1}{x^2-5x+6} = \frac{A}{x-3} + \frac{B}{x-2}

Multiply the whole thing with this x25x+6x^2-5x+6, and you will get :

1=(x2)A+(x3)B1 = (x-2)A + (x-3)B

Now, find A and B. Make 1 side in the right become 0, and then another side.

let x=2x=2 , 1=(22)A+(23)B1 = (2-2)A + (2-3)B

Therefore B=1B = -1.

Let x=3x=3 , 1=(32)A+(33)B1 = (3-2)A + (3-3)B

Therefore A=1A = 1.

So the decomposition is :

1x25x+6=1x3+1x2\frac{1}{x^2-5x+6} = \frac{1}{x-3} + \frac{-1}{x-2}

some good example to try with:

  1. x2+4x2+2x+5\frac{x^2+4}{x^2+2x+5}

  2. 2x34x8(x2x)(x2+4)dx\int \frac{2x^3-4x-8}{(x^2-x)(x^2+4)}dx

  3. 1(x+1)(3x+1)dx\int \frac{1}{(x+1)(3x+1)}dx

  4. x25x+9x25x+6dx\int \frac{x^2-5x+9}{x^2-5x+6}dx

  5. x2+4x2+2x+5dx\int \frac{x^2+4}{x^2+2x+5}dx

  6. 1x(x2+5)dx\int \frac{1}{x(x^2+5)}dx

  7. x+8x(x+6)dx\int \frac{x+8}{x(x+6)}dx

  8. 2x(x2)2(x+2)dx\int \frac{2x}{(x-2)^2(x+2)}dx

Improper Integrals

Basically :

If there is solution, it converges. (Limit exist)

If no solution (=±= \pm\infty), it diverges. (Limit does not exist)

Area, Volume stuff

Area

Volume

There are two methods to find the volume.

Disk Method

Volume of Disk = (area of disk)(width of disk) = πR2w\pi R^2w

where RR is the radius of disk and ww is the width.

Note there is 2 cases. Depends on the axis is horizontal or vertical.

Washer Method

Cross Section

Arc Length

The arc is approximated by straight line segments whose lengths are given by the familiar Distance Formula.

d=(x2x1)2+(y2y1)2d = \sqrt{(x_2-x_1)^2 + (y_2 - y_1)^2}

Area of Surface of Revolution

Matrices operation

Systen of Linear Equations

Operation of Row

Multiplication of Matrix

Echelon Form

Note Reduced Row Echelon Form is often denoted as II.

IA=AIA = A