Pastpaper Solution 201819 Semester 2

Q1(a)

3-point DFT can be obtained by taking 3 samples @ ω=2nπ/3\omega=2n\pi/3 for n=0,1,2

Y[k]={3,2e1.5j,2e1.5j}Y[k] = \{3,2e^{1.5j}, 2e^{-1.5j}\}

Note :

Y[0] phase is 0.

Y[2] = Y[-1] because conjugate.

Q1(b)(i)

Q1(b)(ii)

The average value of x[n] is 15 as the dc coefficient of the spectrum is 15.

Q1(b)(iii)

Sequence x[n] is not a constant sequence as it has non-zero ac coefficients.

Q2 (a)

You can also use Z-Transform approach for the question.

Q2 (b)

The system is not a FIR filter because it is not indepndent to previous output.

Q2 ©

System is not a memoryless system because it depends on previous input x[n-2].

Q3

Note, the h[n] is the system.

Q4 (a)(b)©

Q4 (d)

First find x[n]=x(nTs)x[n] = x(nT_s). Make it in ±π\pm \pi. <- This will determine the change of reconstructed frequency

Then find the frequencies of the reconstructed frequency components.

Finally plug the frequencies into signal to get reconstructed signal.

x[n]=x(nTs)=x(n500)x[n] = x(nT_s) = x(\frac{n}{500})

x[n]=4+5cos(1505002πnπ2)+2cos(4005002πn)=4+5cos(3102πn)+2cos(452πnπ2)x[n] = 4 + 5cos(\frac{150}{500}2\pi n - \frac{\pi}{2}) + 2cos(\frac{400}{500}2\pi n) = 4 + 5cos(\frac{3}{10}2\pi n) + 2cos(\frac{4}{5}2\pi n - \frac{\pi}{2})

x[n]=4+5cos(3102πn)+2cos(2nπ(8πn5π2))=4+5cos(3102πn)+2cos(10πn58πn5+π2)x[n] = 4+5cos(\frac{3}{10}2\pi n) + 2cos(2n\pi - (\frac{8\pi n}{5} - \frac{\pi}{2})) = 4+5cos(\frac{3}{10}2\pi n) + 2cos(\frac{10\pi n}{5} - \frac{8\pi n}{5} + \frac{\pi}{2})

x[n]=4+5cos(3102πn)+2cos(2πn5+π2)=4+5cos(3102πn)+2cos(152πn+π2)x[n] = 4+5cos(\frac{3}{10}2\pi n) + 2cos(\frac{2\pi n}{5} + \frac{\pi}{2}) = 4+5cos(\frac{3}{10}2\pi n) + 2cos(\frac{1}{5}2\pi n + \frac{\pi}{2})

Note that, when reconstructing a sinusoidal signal g(t)g(t) from its sampled version g[n]g[n], unless extra information is given, we always assume that

g[n]=cos(2nπ(fofs)+ϕ)g[n] = cos(2n\pi (\frac{f_o}{f_s})+\phi)

Where fof_o is the lowest frequency of all possible frequencies that can producing g[n]g[n].

Therefore-

For 5cos(3102πn)5cos(\frac{3}{10}2\pi n):

fo500=310\frac{f_o}{500} = \frac{3}{10}

fo=150f_o = 150Hz

For 2cos(452πnπ2)2cos(\frac{4}{5}2\pi n - \frac{\pi}{2})

fo500=15\frac{f_o}{500} = \frac{1}{5}

fo=100f_o = 100Hz

Therefore the reconstructed signal = 4+5cos(300πt)+2cos(200πt+π2)4 + 5cos(300\pi t) + 2cos(200\pi t + \frac{\pi}{2})

Q5 (a)

Q5 (b)

Q6 (a)(b)

Note, Sometimes the H(ω)H(\omega) is not simplified yet. We might need to simplify it.

Q7 (a)

H=H2H1H3H2H = H_2 - H_1 - H_3H_2

Note: H3H2H_3H_2 means the frequency response is between 300 and 500.

Q7 (b)(i)(ii)

From the construction diagram, this is clearly a FIR filter.

Q8 (a)

The frequencies of the rejected components are cos(200πtπ2)cos(200\pi t - \frac{\pi}{2}) and cos(800πt)cos(800\pi t).

After sampling, they are in the form of cos(2001000πnπ2)=cos(15πnπ2)cos(\frac{200}{1000}\pi n - \frac{\pi}{2}) = cos(\frac{1}{5}\pi n - \frac{\pi}{2}) and cos(8001000πn)=cos(45πn)cos(\frac{800}{1000}\pi n) = cos(\frac{4}{5}\pi n) respectively.

To reject cos(15πnπ2)cos(\frac{1}{5}\pi n - \frac{\pi}{2}), we need a FIR having zeros @ ejπ5e^{-j\frac{\pi}{5}} and ejπ5e^{j\frac{\pi}{5}}

H1(z)=(1ejπ5z1)(1ejπ5z1)H_1(z) = (1-e^{j\frac{\pi}{5}}z^{-1})(1-e^{-j\frac{\pi}{5}}z^{-1})

To reject cos(45πn)cos(\frac{4}{5}\pi n), we need a FIR having zeros @ ej4π5e^{-j\frac{4\pi}{5}} and ej4π5e^{j\frac{4\pi}{5}}

H2(z)=(1ej4π5z1)(1ej4π5z1)H_2(z) = (1-e^{j\frac{4\pi}{5}}z^{-1})(1-e^{-j\frac{4\pi}{5}}z^{-1})

We need 2 filters H1(z)H_1(z) and H2(z)H_2(z) . Then we cascade them.

H(z)=H1(z)H2(z)=(1ejπ5z1)(1ejπ5z1)(1ej4π5z1)(1ej4π5z1)H(z) = H_1(z)H_2(z) = (1-e^{j\frac{\pi}{5}}z^{-1})(1-e^{-j\frac{\pi}{5}}z^{-1})(1-e^{j\frac{4\pi}{5}}z^{-1})(1-e^{-j\frac{4\pi}{5}}z^{-1})

H(z)=(12cos(π/5)z1+z2)(12cos(4π/5)z1+z2)H(z) = (1-2cos(\pi/5)z^{-1} + z^{-2})(1- 2cos(4\pi/5)z^{-1} + z^{-2})

Q8 (b)

Q8 ©

H(ω)=H(z)z=ejωH(\omega) = H(z)|_{z=e^{j\omega}}

=(12cos(π/5)ejω+ej2ω)(12cos(4π/5)ejω+ej2ω)= (1-2cos(\pi/5)e^{-j\omega} + e^{-j2\omega})(1- 2cos(4\pi/5)e^{-j\omega} + e^{-j2\omega})

=>

H(0)=(12cos(π/5)+1)(12cos(4π/5)+1)=1.38H(0) = (1-2cos(\pi/5)+1)(1-2cos(4\pi/5)+1) = 1.38

H(π)=(12cos(π/5)ejπ+ej2π)(12cos(4π/5)ejπ+ej2π)H(\pi) = (1-2cos(\pi/5)e^{-j\pi} + e^{-j2\pi})(1- 2cos(4\pi/5)e^{-j\pi} + e^{-j2\pi})

H(π)=(12cos(π/5)(1)+1)(12cos(4π/5)(1)+1)=1.38H(\pi) = (1-2cos(\pi/5)(-1) + 1)(1- 2cos(4\pi/5)(-1) + 1) = 1.38

It is a bandpass filter.

Q9 (a)(b)©

Q10 (a)

Factorize is needed.

Q10 (b)

Partial fraction is needed.

Q10 ©

There will be 1 less zero.

Q11 (a)(b)©

Pastpaper Solution 201718 Semester 2

Pastpaper Solution 201617 Semester 2

(a)

x[n]=δ[n+1]2δ[n]+3δ[n1]2δ[n2]+δ[n3]x[n] = \delta[n+1]-2\delta[n] + 3\delta[n-1] - 2\delta[n-2] + \delta[n-3]

x[n]=[1,2,3,2,1]x[n] = [1,\underline{-2},3,-2,1]

Q5

Q7 (a)

H=(H1+H3H2)H = (H_1 + H_3H_2)

Note: H3H2H_3H_2 means the frequency response is between 300 and 500.

Pastpaper Solution 201516 Semester 2